Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 99(5): 449-460, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689451

RESUMO

Ribavirin is a guanosine analog with broad-spectrum antiviral activity against RNA viruses. Based on this, we aimed to show the anti-SARS-CoV-2 activity of this drug molecule via in vitro, in silico, and molecular techniques. Ribavirin showed antiviral activity in Vero E6 cells following SARS-CoV-2 infection, whereas the drug itself did not show any toxic effect over the concentration range tested. In silico analysis suggested that ribavirin has a broad-spectrum impact on SARS-CoV-2, acting at different viral proteins. According to the detailed molecular techniques, ribavirin was shown to decrease the expression of TMPRSS2 at both mRNA and protein levels 48 h after treatment. The suppressive effect of ribavirin in ACE2 protein expression was shown to be dependent on cell types. Finally, proteolytic activity assays showed that ribavirin also showed an inhibitory effect on the TMPRSS2 enzyme. Based on these results, we hypothesized that ribavirin may inhibit the expression of TMPRSS2 by modulating the formation of inhibitory G-quadruplex structures at the TMPRSS2 promoter. As a conclusion, ribavirin is a potential antiviral drug for the treatment against SARS-CoV-2, and it interferes with the effects of TMPRSS2 and ACE2 expression.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Regulação para Baixo/efeitos dos fármacos , Ribavirina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Animais , Células CACO-2 , Chlorocebus aethiops , Quadruplex G/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas/genética , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Células Vero
2.
Mol Biol Rep ; 47(7): 5041-5050, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32529277

RESUMO

In this study, we aimed at identifying the regulatory role of marT gene, known as the regulator of misL, on 15 different biofilm-related genes in S. Typhimurium 14028 strain. We also tested the strains for their ability to form biofilm and determined the adherence characteristics of the wild type and the mutant strains of the organism on Caco-2 and HEp-2 cells. For comparative analyses of the candidate genes, individual gene mutations were created via antibiotic gene cassette insertion into each gene of interest. marT gene was cloned behind an arabinose inducible BAD promoter in order to control marT expression. This recombinant plasmid was transfer into each of the 15 mutant strains to investigate the level of expression of each single gene in the presence and absence of marT induction. Besides determination of variations in biofilm formation by each mutant strain, the attachment characteristics of them onto Caco-2 and HEp-2 cell lines were also reported. As a result of attachments experiments on polystyrene surfaces, it was determined that the biofilm production capacity of each mutant strain decreased in a statistically significant manner (p < 0.05). QRT-PCR trials indicated that the marT gene regulates the expression of 14 genes, namely fimA, fimD, fimF, fimH, stjB, stjC, csgA, csgD, ompC, sthB, sthE, rmbA, fliZ and yaiC, in a positive manner. QRT-PCR studies were also revealed that the MarT protein positively regulates its own promoter. When the adherence characteristics of the mutant strains and the wild-type were investigated by using Caco-2 and HEp-2 cells, it was determined that the single gene mutations did have no effect on bacterial adhesion. In view of our mutational analyses and biofilm formation studies, it was concluded that fliZ, ompC, rmbA, stjB and stjC genes are related with biofilm formation in Salmonella, besides other cellular functions of them. Taken together, our data suggested that the regulatory role of MarT protein is not only restricted to the regulation of misL gene expression, but it rather acts as a general regulator on the biofilm-related genes in Salmonella.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/genética , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células CACO-2 , Células Hep G2 , Humanos , Mutação , Regiões Promotoras Genéticas , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...